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Vibrational energy relaxation (VER) of polyatomic, as opposed to diatomic, molecules can occur via different,
often solvent assisted, intramolecular and/or intermolecular pathways. In this paper, we apply the linearized
semiclassical (LSC) method for calculating VER rates in the prototypical case of a rigid, symmetrical and
linear triatomic molecule (A-B-A) in a monatomic liquid. Starting at the first excited state of either the
symmetric or asymmetric stretches, VER can occur either directly to the ground state or indirectly via
intramolecular vibrational relaxation (IVR). The VER rate constants for the various pathways are calculated
within the framework of the Landau-Teller formalism, where they are expressed in terms of two-time quantum-
mechanical correlation functions. The latter are calculated by the LHA-LSC method, which puts them in a
“Wignerized” form, and employs a local harmonic approximation (LHA) in order to compute the necessary
multidimensional Wigner integrals. Results are reported for the LHL/Ar model of Deng and Stratt [J. Chem.
Phys.2002, 117, 1735], as well as for CO2 in liquid argon and in liquid neon. The LHA-LSC method is
shown to give rise to significantly faster VER and IVR rates in comparison to the classical treatment, particularly
at lower temperatures. We also find that the type and extent of the quantum rate enhancement is strongly
dependent on the particular VER pathway. Finally, we find that the classical and semiclassical treatments can
give rise to opposite trends when it comes to the dependence of the VER rates on the solvent.

I. Introduction

Vibrational energy relaxation (VER) is the fundamental
process by which an excited vibrational mode releases its excess
energy to other, intermolecular and/or intramolecular, degrees
of freedom (DOF). Virtually all chemical phenomena in the
condensed phase involve VER processes. The measurement and
calculation of VER rates in such systems have therefore received
much attention over the last few decades.1-49 Recent theoretical
and computational studies of VER have been mostly based on
the Landau-Teller (LT) formula,15,50 which is derived by
assuming weak coupling between the relaxing mode and the
accepting DOF and neglecting solvent induced fluctuations of
the vibrational frequency.47 This formulation puts the VER rate
constant in terms of the Fourier transform (FT), at the vibrational
frequencyω, of a certain quantum mechanical autocorrelation
function of the force exerted on the relaxing mode by the
remaining DOF. The fact that for most molecular vibrations
pω/kBT . 1, even at room temperature, implies that replacing
the quantum-mechanical force-force correlation function (FFCF)
by its classical counterpart is in general not justified. Indeed,
discrepancies by many orders of magnitude have been reported
between experimentally measured VER rates and predictions
based on classical molecular dynamics simulations.51-55 At the
same time, a numerically exact calculation of the quantum-
mechanical FFCF in liquid solutions is not feasible. The most
popular approach for dealing with this difficulty has been based
on multiplying the classical prediction for the VER rate constant
by a frequency-dependent quantum correction factor (QCF).3,56-71

Many different approximate QCFs have been proposed in the
literature. Unfortunately, the choice of QCF is often rather ad
hoc and estimates obtained from different QCFs can differ by

orders of magnitude, particularly when high-frequency vibrations
are involved. The development of more rigorous methods for
computing VER rate constants is therefore clearly highly
desirable.

We have recently introduced a new approach for calculating
VER rate constants, which is based on estimating the quantum-
mechanical FFCF via the linearized semiclassical (LSC) ap-
proximation. The latter approximation involves linearizing the
forward-backward path integral action in the exact quantum-
mechanical FFCF, with respect to the difference between the
forward and backward paths.72 This leads to a classical-like
expression for the FFCF, where the classical variables are
replaced by certain Wigner transforms of the corresponding
quantum-mechanical operators. We have also introduced a local
harmonic approximation (LHA) in order to evaluate these
Wigner transforms in many-body anharmonic systems.53 In the
remainder of this paper, we will refer to the method that results
from the combination of the LSC and LHA approximations as
LHA-LSC.

In previous work, we have demonstrated the accuracy of the
LHA-LSC method on the following nontrivial benchmark
problems:53 (1) a vibrational mode coupled to a harmonic bath,
with the coupling exponential in the bath coordinates, and (2)
a diatomic coupled to a short linear chain of helium atoms. The
feasibility of applying the method to molecular liquids was also
demonstrated via applications to a “breathing sphere” diatomic
in a two-dimensional monatomic liquid, as well as to neat liquid
oxygen, neat liquid nitrogen, and liquid oxygen/argon mix-
tures.53-55 We have also performed a systematic analysis of the
temperature and mole fraction dependence of the LHA-LSC-
based VER rates, as well as of the importance of different
contributions to them.55 The LHA-LSC-based predictions were
found to be of the same order of magnitude as the experimental* Corresponding author. E-mail: eitan@umich.edu.
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results (when available). This represents a dramatic improvement
in comparison to the classical predictions which are smaller than
the experimental results by many orders of magnitude. We have
also shown that the LHA-LSC method can accurately reproduce
the experimental dependence of the VER rate on temperature
in the case of neat liquid oxygen and the dependence of the
VER rate on the oxygen mole fraction in the case of liquid
oxygen/argon mixtures.55 Our work has also shown that obtain-
ing accurate predictions requires that one account for quantum
delocalization and nonclassical sampling.54,55

In recent experimental studies of VER, attention has been
shifting to polyatomic solute/solvent systems.37,73-77 The main
new feature of VER in polyatomic molecules, as opposed to
diatomic molecules, has to do with the fact that it can occur
via different intramolecular and/or intermolecular pathways.
Indeed, VER in polyatomic molecules often involves solvent-
assisted intramolecular vibrational relaxation (IVR).43,78 More
specifically, the solvent can induce coupling between intramo-
lecular modes of a polyatomic solute, which would be uncoupled
in the isolated molecule. The case of small polyatomic molecules
(3-4 atoms) is particularly attractive since the modes that define
the vibrational spectrum are more or less isolated, and the
number of VER pathways is relatively small.

IR-pump/Raman-probe spectroscopy is arguably the most
powerful experimental method available for studying VER
pathways in polyatomic liquids.18,79,80In this technique, a short
IR pulse is used to excite a vibrational mode, and a delayed
visible probe generates anti-Stokes transients from all Raman
active vibrations. This way, the relaxation of the pumped
transition into first-generation daughters, and the subsequent
decay into second- and even third-generation daughters, can be
monitored in real time and with an unprecedented level of detail.
This technique has been used for elucidating the VER pathway
of high-frequency stretches in a variety of molecular liquids,
including dichloromethane,81 chloroform,82,83bromoform,84 ac-
etonitrile,85,86 benzene,87 nitromethane,88 OClO in aqueous
solution,89 water and its isotopomers,76,90-94 and alcohols.90,95-97

The wealth of detailed experimental information on VER in
polyatomic solute/solvent systems has motivated many theoreti-
cal studies that attempted to provide a molecular interpretation
of the observed time scales and pathways in such systems as a
linear triatomic solute in a monatomic liquid,43 OClO in water,98

HOD in D2O,42,99,100azide in water,101,102 neat liquid chloro-
form,45 and neat liquid methanol.48,49Those theoretical studies
have been based on classical MD simulations, although a few
have also attempted to account for quantum-mechanical effects
through the use of QCFs.42,43,60,100 Extending the range of
application of the LHA-LSC method to such polyatomic liquid
solutions is therefore highly desirable. In this paper, we take
the first step in this direction by using the LHA-LSC method
for calculating the rates of different VER pathways in the case
of a rigid, symmetrical and linear triatomic molecule (A-B-
A) in a monatomic liquid. In this case, VER from the first
excited state of the symmetric or asymmetric stretches can occur
either directly to the ground state or indirectly via IVR.

The remainder of this paper will be organized as follows.
The model Hamiltonian of a symmetrical and linear triatomic
solute in a monatomic liquid is outlined in section II. The general
theoretical framework of VER in such systems is described in
section III. The LHA-LSC method for calculating VER rates
in this system is formulated in section IV. The three models on
which calculations were performed are described in section V.
The simulation techniques used for calculating the LHA-LSC-
based VER rate constants are described in section VI. The

simulation results are reported and analyzed in section VII. We
conclude in section VIII with a summary of the main results
and some discussion on their significance. Explicit mathematical
expressions for quantities required for the evaluation of the
LHA-LSC approximation are provided in the Appendix.

II. Model

The model that we will focus on in this paper probably
corresponds to the simplest example of solvent-assisted VER
involving a polyatomic solute. The polyatomic solute of choice
corresponds to arigid, linear and symmetric triatomic molecule,
and the solvent is assumed to be monatomic. It should be noted
that Deng and Stratt have recently employed a similar model
for studying VER in a polyatomic molecule within the frame-
works of classical mechanics, linearized instantaneous normal
mode (INM) formalism (for IVR), and the instantaneous-pair
theory (for intermolecular VER).43

The solvent-free Hamiltonian of the rigid, linear and sym-
metric solute molecule A-B-A is given by (cf. Figure 1)

Here, {xa, xb, xc} and {pa, pb, pc} are the positions and
corresponding momenta of the atomic sitesa, b, andc relative
to the molecular center of mass (projected along the molecular
axis and such thatxa < 0 andxc > 0); mA andmB are the masses
of atoms A and B, respectively;κ is the spring constant; andre

is the equilibrium A- B bond length. It should be noted that
the bending modes were left out for the sake of simplicity.
Accounting for stretch-to-bend VER pathways may be important
in practice, and an extension of the methodology to include
bending modes will be considered in future work. Furthermore,
as pointed out by Deng and Stratt, symmetric to asymmetric
IVR is actually not uncommon in polyatomic molecules.43 We
also note that the lack of anharmonic terms in the intramolecular
potential implies that solvent-free IVR is neglected. This
simplification reflects our desire to focus onsolVent-assisted
IVR.

We next rewrite the Hamiltonian in eq 1 in terms of the
symmetric(s) stretch andasymmetric(as) stretch normal mode
coordinates and momenta:

Here,

are the frequencies of the symmetric and asymmetric stretches,
respectively, andM ) 2mA + mB is the molecular mass. It
should be noted that

Figure 1. A schematic view of the linear symmetric triatomic molecule.
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such thatωas > ωs.
The corresponding normal mode coordinates are given by

whereqa ) xmA(xa + re), qb ) xmBxb, andqc ) xmA(xc -
re) are the mass weighted displacements of the three atoms from
their equilibrium positions. The reverse transformation from
normal modes to local modes is given by

Finally, we define a vector of atomic displacements,q, which
can be presented as either (qa, qb, qc) or (qs, qas).

The translational and rotational kinetic energy terms of the
free triatomic molecule are given byPCM

2/2M and L2/2I,
respectively, wherePCM is the molecular center of mass
momentum,L is its overall angular momentum, andI is its
moment of inertia (boldface symbols represent vectors through-
out this paper):

It should be noted that, unlike ref 43, we explicitly account for
the vibrational-rotational coupling, which gives rise to VER
via centrifugal forces. It should also be noted that a more
negatiVe qs translates intoextensionalong the A-B bonds, and
therefore leads to a larger moment of inertia.

We next turn to the solvent, which we assume to be
monatomic. The solvent-solvent interactions and the interac-
tions between the solvent atoms and the three sites of the
triatomic solute are described in terms of pair potentials, such
that the overall solute+ solvent Hamiltonian can be given in
the following form:

Here,

and

wherePj is the momentum of thejth solvent atom,mS is its
mass,r jR is the vector pointing from thejth solvent atom to
site R on the solute,Ω is a unit vector pointing from sitea to

sitec of the triatomic molecule, andrjk is the distance between
the jth andkth solvent atoms.

The potential energyU(q) in eq 12 involves three types of
pair potentials corresponding to (1) the interaction between the
solvent atoms,φs(r); (2) the interaction between atom A of the
triatomic solute and the solvent atoms,φa(r) ) φc(r) ≡ φA(r);
and (3) the interaction between atom B of the triatomic solute
and the solvent atoms,φb(r) ≡ φB(r). In actual simulations, we
have assumed that all of these pair potentials are of the Lennard-
Jones (LJ) type, namely,

III. Vibrational Energy Relaxation Theory

The eigenfunctions of the solvent-free vibrational Hamiltonian
Hs are given by|ns〉 X |nas〉 ≡ |ns, nas〉, such that

with ns, nas) 0, 1, 2, .... VER proceeds via transitions between
these solvent-free vibrational states. Within the framework of
Fermi’s golden rule, the rate constant for the transition from
state|ns(i), nas(i)〉 to state|ns(f), nas(f)〉 is given by:

where

and

Here,ωif ) [ns(f) - ns(i)]ωs + [nas(f) - nas(i)]ωas, Hb ) T(0)
+ U(0), â ) 1/kBT, andZb ) Tr{e-âHb}.

In practice, the evaluation of〈ns(i), nas(i)|T(q) + U(q)|ns(f),
nas(f)〉 is usually based on expandingU(q) andT(q) in powers
of q:

Substituting these expansions into〈ns(i), nas(i)|T(q) + U(q)|ns-
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transitions, andGU,s,asandGT,s,asinduce (ns, nas) f (ns ( 1, nas

-1) transitions. Thus, the lowest order contributions tointer-
molecularVER are associated withFU,s, FU,as, FT,s, andFT,as,
while the lowest order contribution to IVR is associated with
GU,s,as and GT,s,as. We will also assume that the lowest order
contributions are the dominant ones, such that contributions from
higher order terms can be neglected (including those arising
from GU,s,s, GT,s,s, GU,as,as, andGT,as,as).

The expansion coefficientsFU,s, FU,as, FT,s, FT,as, GU,s,as, and
GT,s,asfor the model under discussion are given by43

where

It should be noted that the centrifugal coupling only contributes
to the intermolecular VER of the symmetric mode.

Starting at the first excited state of theasymmetricstretch,
|ns(i), nas(i)〉 ) |0, 1〉, VER can follow one of two pathways
(cf. Figure 2).

1. VER to the|0, 0〉 state with the rate constant:

where

2. IVR to the|1, 0〉 state with the rate constant:

whereωivr ) ωas - ωs, and

It should be noted that accounting for IVR between|0, 1〉 and
|2, 0〉 would require the inclusion of third-order expansion terms
of the formqs

2qas in eqs 18 and 19, and is therefore not allowed
within our model (even if these states are close in energy).

Next consider the possible VER pathways when one starts
at the first excited state of thesymmetricstretch,|ns(i), nas(i)〉
) |1, 0〉. Here too, VER can follow one of two pathways (cf.
Figure 2).

1. VER to the|0, 0〉 state with the rate constant:

where

2. IVR to the|0, 1〉 state with the rate constant:

It should be noted that significant IVR from the symmetric
stretch to the asymmetric stretch requires thatâpωivr is
comparable to or smaller than unity.

Finally, it should also be noted that transitions from the
ground state|0, 0〉 to the first,|1, 0〉, and second,|0, 1〉, excited
states can be assumed to be negligibly slow, given thatâpωs,
âpωas . 1.

IV. The linearized Semiclassical Approximation

In this section, we will outline the application of the LHA-
LSC method for calculating the three quantum-mechanical
correlation functions,Cs(t), Cas(t), andCivr(t) (cf. eqs 23, 27,
and 25, respectively). In doing so, we will follow and extend
procedures previously used for studying VER in the case of
diatomic molecules in liquid solution.54,55

We will start out with the LSC approximation forCas(t),
which only involves the potential forceFU,as. The LSC ap-
proximation for this correlation function is given by53,54,72

Here,Qt
(Cl) ) Qt

(Cl)(Q0, P0) andPt
(Cl) ) Pt

(Cl)(Q0, P0) correspond
to the Cartesian coordinates and momenta of all the atoms
(including these that constitute the triatomic molecule), which
are propagated classically with the initial conditionsQ0 andP0,
and

is the Wigner transform of the operatorA.103 The LHA is
employed in order to calculate the Wigner transform [δFU,ase-

âHb]W(Q0, P0) in eq 29.53-55 More specifically, we effectively

Figure 2. VER pathways in the linear symmetric triatomic molecule.
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expandHb and FU,as to second order aroundQ0, followed by
an analytical integration over∆ of the Gaussian integral
associated with [δFU,ase-âHb]W(Q0, P0)/〈Q0|e-âHb|Q0〉. This leads
to the following LHA-LSC approximation forCas(t):

Here, {Pn
(k)} are mass-wighted normal mode momenta, as

obtained from the expansion ofHb to second order aroundQ0

(the LHA), andR(j) ) Ω(j) coth[âpΩ(j)/2]/p, where{(Ω(k))2}
are the eigenvalues of the corresponding Hessian matrix (explicit
expressions of the potential derivatives underlying the LHA for
the model considered here are provided in the Appendix). The
termDU,as(Q0, Pn,0) represents quantum nonlocality and is purely
quantum-mechanical [i.e., it vanishes at the classical (p f 0)
limit]. The explicit expression for this term can be found in ref
54, and some detailed expressions of quantities required in its
evaluation for the model under discussion are provided in the
Appendix. Another quantum-mechanical effect is introduced by
the fact that the initial sampling of the positions and momenta
is nonclassical. More specifically, the initial sampling of the
positions is based on the exact quantum-mechanical position
probability density,〈Q0|e-âHb|Q0〉/Zb, while the initial sampling
of the momenta is based on the nonclassical probability density
∏j)1

N [1/(R(j)πp2)]1/2 exp[-(Pn,0
(j) )2/(p2R(j))].

Next consider the correlation functionCs(t), which involves
contributions from the potential force,FU,s, and centrifugal force,
FT,s. The LHA-LSC approximation in this case can be obtained
following the procedures previously developed for diatomic
molecules, which lead to the following result:54,55

DT,s(Q0, Pn,0) andDU,s(Q0, Pn,0) are purely quantum-mechanical
nonlocal terms that originate from the centrifugal and potential
forces, respectively. Explicit expressions for those terms can
be found in ref 54, and some detailed expressions of quantities
required for their evaluation (for the model under discussion)
are provided in the Appendix.

We finally turn to the case ofCivr(t). The latter is similar to
Cas(t), and the only difference is thatFU,asis replaced byGU,s,as.
Thus, the LHA-LSC approximation forCivr(t) is as follows:

The purely quantum-mechanical termDU,s,as(Q0, Pn,0) originates
from theGU,s,ascoupling term which leads to IVR. An explicit
expression for this term can be obtained by replacingFU,as by
GU,s,asin the expression forDU,as. Some detailed expressions of
quantities required for the evaluation of this term for the model
under discussion are provided in the Appendix.

V. Model Parameters

Classical and LHA-LSC-based calculations ofks, kas, and
kivr were performed on three different model systems and under
different conditions as described below (cf. Table 1 for model
parameters).

The first model that we considered is the LHL/Ar model,
which was recently studied by Deng and Stratt within the
classical INM formalism (for IVR) and instantaneous-pair theory
(for intermolecular VER).43 This model corresponds to the case
where atom A is much lighter than atom B, such thatωas∼ ωs.
More specifically,mA/mB ) 0.054, which implies thatωas/ωs

) 1.053. Unlike other models considered in ref 43, the
frequencies assigned to the asymmetric and symmetric stretches
were relatively high in this case, namely,ωas/2πc ) 2000 cm-1

and ωs/2πc ) 1900 cm-1. The solvent corresponds to high-
density supercritical argon fluid at room temperature (F ) 24.4
nm-3, T ) 294.25 K). Sinceâpωas ) 9.8, âpωs ) 9.3, and
âpωivr ) 0.49, one expects sizable quantum corrections in the
case ofkas and ks, while a classical treatment is expected to
provide relatively reliable results in the case ofkivr. One also
expects that, in this case,kivr . kas, ks. If so, an equilibrium
will be established between the symmetric and asymmetric
excited states, prior to VER from either one of them to the
ground state. Another interesting feature of this model has to
do with the relatively small moment of inertia of the solute
molecule, which suggests that centrifugal forces may contribute
significantly to VER.

The second model consists of a CO2-like solute in liquid argon
(F ) 19.76 nm-3, T ) 94.16 K). In this case,âpωas ) 36.7,
âpωs ) 19.2, andâpωivr ) 17.5. Thus, one expects more
pronounced quantum corrections in this case, including forkivr.
The relatively large value ofâpωivr also implies that IVR from
the|0, 1〉 state to the|1, 0〉 state is an irreversible process. Thus,
an excited symmetric stretch must relax to the ground state via
theks pathway, while the excited asymmetric stretch can relax
via either thekivr or kas pathways.

The third model is similar to the second one, except for the
fact that the solvent was changed from argon into neon. The
same thermodynamic point in terms of reduced LJ units was

TABLE 1: Model and Simulation Parametersa

model LHL/Ar CO2/Ar CO2/Ne

re (Å) 1.1388 1.16 1.16
mA (amu) 3.895 16.0 16.0
mB (amu) 72.11 12.0 12.0
ωas/2πc (cm-1) 2000 2400 2400
ωs/2πc (cm-1) 1900 1253 1253
ωivr/2πc (cm-1) 100 1147 1147
εs/kB (K) 117.7 117.7 47.0
σs (Å) 3.504 3.504 2.72
εA/kB (K) 117.7 85.1 53.8
σA (Å) 3.504 3.23 2.84
εB/kB (K) 117.7 77.6 49.1
σB (Å) 3.504 3.43 3.04
T (K) 294.25 94.16 37.6
F (nm-3) 24.4 19.76 42.24
time step (fs) 2.0 4.0 3.0

a All simulations were performed with one triatomic solute and 105
solvent atoms in the simulation box.

Cas(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ][δFU,as(Q0) + DU,as(Q0, Pn,0)] δFU,as(Qt
(Cl))

(31)

Cs(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ][δFU,s(Q0) + δFT,s(P0) + DU,s(Q0, Pn,0) +

DT,s(Q0, Pn,0)][δFU,s(Qt
(Cl)) + δFT,s(Qt

(Cl))] (32)

Civr(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0 ∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ][δGU,s,as(Q0) +

DU,s,as(Q0, Pn,0)] δGU,s,as(Qt
(Cl)) (33)
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used (T* ) 0.8 andF* ) 0.85), such that the actual density
and absolute temperature areF ) 42.24 nm-3 andT ) 37.6 K,
respectively. As a result,âpωas) 91.9,âpωs ) 48.0, andâpωivr

) 43.9. Hence, one expects the most pronounced quantum
effects in this case.

VI. Simulation Techniques

Classical simulations on the LHL/Ar model were initiated
with an overall number of 108 solvent atoms in a cubical
simulation cell with standard periodic boundary conditions,
which were organized in 27 unit cells (4 solvent atoms per unit
cell). Three neighboring solvent atoms in a linear configuration
were then replaced by the LHL molecule. The system was then
equilibrated at a desired temperature for 20 ns with the help of
the velocity rescaling method and the velocity Verlet algo-
rithm.104The constraints imposed by the rigidity of the molecule
were imposed explicitly by working in terms of the center of
mass and angular momentum, rather than the Cartesian coor-
dinates of the individual atoms. The equilibration period was
followed by a calculation of the correlations functionsCs(t),
Cas(t), andCivr(t) by averaging over 10 240 equilibrium trajec-
tories, each with 5000 time steps. Once the correlation functions
were obtained, their FT was calculated via the FFT method.
All of the results reported below were based on the cosine
transform of the real part of the correlation functions.55 In the
case of very high vibrational frequencies (>500 cm-1) the FT
is a very small number and, therefore, very difficult to compute
directly. Following the common practice, we instead extrapo-
lated the exponential gap law, which was observed to emerge
at low frequencies, to higher frequencies.105,106Assuming that
this extrapolation is the major source of error in these cases,
we evaluated the error bars reported for the VER rate constants
based on the least-squares fit to the corresponding linear
frequency dependence of the VER rate constant (on a semilog
scale).

Classical simulations on the CO2/Ar system were started by
replacing the LHL molecule by a CO2 molecule in an equilib-
rium configuration of the LHL/Ar system. The density was then
modified to F ) 19.76 nm-3 by changing the volume of the
simulation cell, and the system was allowed to equilibrate for
about 10 ns atT ) 94.16 K. Classical simulations on the CO2/
Ne system were started with an equilibrium configuration of
the CO2/Ar system, where the argon atoms were replaced by
neon atoms. The density was then modified toF ) 42.24 nm-3

by changing the volume of the simulation cell, and the system
was allowed to equilibrate for about 10 ns atT ) 37.6 K. The
subsequent calculation of the correlation functionsCs(t), Cas(t),
andCivr(t) and corresponding VER rate constants followed the
same procedure as in the LHL/Ar system.

LHA-LSC-based calculations ofks, kas, andkivr followed a
procedure similar to that previously described in the context of
diatomic molecules.55 The main difference between the current
and previous studies is that, rather than restricting the LHA-
LSC treatment to contributions from the first few solvation shells
around the triatomic solute, we were able to apply it to all the
atoms in the simulation cell (which was made possible by the
availability of improved computer resources). The calculation
starts by sampling the initial positions of all the atoms in the
simulation cell via a PIMD simulation, where 16 beads were
assigned to each atom. The PIMD simulation was started with
all 16 beads in the position of the corresponding atom in a
classical equilibrium configuration (as obtained from the clas-
sical simulation described in the previous paragraphs). This was
followed by an equilibration period of 3 ps at the desired

temperature, with the help of Nose-Hoover chain thermostats
of length four (one thermostat for each of the three Cartesian
coordinates of each atom), and the velocity Verlet algorithm.107

It should be noted that the initial configurations sampled satisfied
the constraint imposed by the linearity of the triatomic mol-
ecule.54 The sampling was performed by choosing random beads
from snapshots of the isomorphic liquid of cyclic polymers at
each time step. An overall number of up to 286 000 initial
configurations was used. For each of these, we calculated the
normal mode frequencies and transformation matrix via the
Jacobi method,108 and used them in order to sample the initial
normal mode momenta. Here too, we restrict ourselves to normal
mode displacements which satisfy the constraints imposed by
the linearity of the triatomic molecule.54 We then performed a
classical MD simulation over 500 time steps for each of the
initial configurations, and extracted the correlation functionsCs-
(t), Cas(t), and Civr(t) from them. It should be noted that, in
calculating correlations functions via LHA-LSC, we can only
correlate the relevant quantities att ) 0 and at a later timet.

VII. Results and Discussion

A. LHL in Liquid Argon at G ) 24.4 nm-3 andT ) 294.25
K. The VER rate constantskas, ks, andkivr for the LHL/Ar system
are shown in Figure 3, as a function of frequency (on a semilog
plot). The results obtained via the LHA-LSC method and fully
classical calculations are shown. The corresponding values of
kas, ks, andkivr at the actual frequenciesωas, ωs, andωivr of the
LHL molecule are reported in Table 2. Also given in this table
are the values predicted by only using nonclassical initial
sampling, while neglecting the nonlocal termsDU,s, DU,as, DU,s,as,
andDT,s (cf. eqs 31, 32, and 33).

Figure 3. The classical and LHA-LSC frequency-dependent rate
constants for the symmetric stretch, asymmetric stretch, and IVR, for
LHL in argon. Calculated data are shown as solid lines. The dashed
lines represent extrapolations to the corresponding frequencies of the
symmetric and asymmetric stretches. The relevant frequencies are
indicated by arrows.
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We first note that our classical predictions forkas andks are
about 1 order of magnitude smaller than these reported by Deng
and Stratt for the same model.43 This discrepancy may be
attributed to the fact that the values reported in ref 43 were
obtained within the framework of the instantaneous pair theory,
while the values reported in Table 2 were obtained by assuming
that the exponential gap law observed at low frequencies can
be extrapolated to higher frequencies. We also note that our
prediction for the classicalkivr is in excellent agreement with
that reported in ref 43 (a numerically exact calculation ofkivr is
possible in this case due to the relatively small value ofωivr).

The classicalks is about twice as large askas. A similar trend
was also reported in ref 43, where it has been attributed to the
fact that the solvent is more effective at relaxing the symmetric
stretch. More specifically, the central B atom is protected from
the solvent by the two terminal A atoms. The solvent is therefore
ineffective in applying a force on the central B atom along the
molecular axis. This implies thatFU,as ≈ xmB/(2mAM)(Fa +
Fc), while FU,s ) 1/x2mA(Fa - Fc) (cf. eq 20). At the same
time, Fa and Fc tend to have opposite signs because of the
solvent’s tendency to apply inward pressure. Thus,|Fa - Fc|
> |Fa + Fc|, which implies that the solvent will be more
effective at relaxing the symmetric stretch (to this end, also note
that mB/M ∼ 1 in the case of the LHL model). In addition, it
should be noted thatωs < ωasmakes the VER of the symmetric
stretch even more effective because of the decrease in the density
of accepting modes as the frequency increases.

The classical value ofkivr is observed to be larger thanks

andkas by about 6 orders of magnitude. The fact thatâpωivr )
0.49 also implies thatk′ivr ∼ kivr . ks, kas. Thus, one expects an
equilibrium to be established between the symmetric and
asymmetric excited states, prior to VER from either one of these
excited states to the ground state. The corresponding branching
ratio is 3.6, which implies that about one out of four molecules
will relax to the ground state via the asymmetric stretch. It
should be noted that the fact that IVR is faster is a direct
consequence of the small value ofâpωivr. In fact, the solvent is
expected to be rather ineffective at assisting IVR.43 This is
because the potential curvaturesGaa andGcc tend to have the
same sign, such thatGU,s,as∝ (Gaa - Gcc) becomes small.

The frequency dependence of the LHA-LSC-basedkas, ks,
andkivr follows a trend which is similar to that observed in the
classical case (cf. Figure 3). However, the actual values ofkas,
ks, andkivr obtained via the LHA-LSC method are generally
larger than the classical ones (except at very low frequencies).
The enhancement is much more pronounced in the case ofks

and kas. More specifically, whilekivr increases by a factor of
about 2,ks andkas increase by 2 orders of magnitude. It is also

interesting to note that the enhancement of the LHA-LSC-based
ks, kas, and kivr is significantly larger than that predicted by
various QCFs (cf. Table 2). Furthermore, LHA-LSC predicts
a larger enhancement in the case ofks, despite the fact thatωs

< ωas. This should be contrasted with the commonly used QCFs,
where the quantum enhancement of the VER rate constant is a
monotonically increasing function of the frequency. The larger
enhancement in the case of the symmetric stretch may reflect
the fact that the solvent is more effective at relaxing it.43

kivr is still about 4 orders of magnitude larger thanks andkas

within the LHA-LSC treatment, which implies that equilibrium
will still be established between the symmetric and asymmetric
excited states, prior to VER to the ground state. The branching
ratio is also similar to that in the classical case.

In Figure 4, we show the FFCF in the time and frequency
domains (the latter is shown on a semilog plot), as obtained
via the LHA-LSC method, for the symmetric stretch. Figure
4a shows the contributions to the FFCF from the classical-like
term [FU,s + FT,s][FU,s(t) + FT,s(t)] and nonclassical term [DU,s

+ DT,s][FU,s(t) + FT,s(t)] (the initial sampling is nonclassical in
both cases). The contributions of those two terms to the FT of
the FFCF are shown in Figure 4b. The classical-like term is
observed to dominate the FFCF in the time and frequency
domains. Indeed, adding the nonclassical term is observed to
increaseks only by a factor of 2 (which should be contrasted to
the overall enhancement of the LHA-LSC rate over the classical
one by a factor of about 300). This observation should also be

TABLE 2: kas, ks, and kivr in the LHL/Ar System, as Obtained via the LHA-LSC Methoda

ks/µs-1

LHL/Ar
kas/µs-1

U U U +T
kivr/ns-1

U
branching ratio

eâpωiVrks/kas

classical (41( 2) × 10-3 (70 ( 10)× 10-3 (91 ( 8) × 10-3 109( 6 3.6( 0.5
nonclassical sampling 5( 1 16( 6 15( 5 (2.0( 0.5)× 102 5 ( 3
LHA-LSC 11( 3 28( 9 27( 8 (2.0( 0.5)× 102 4 ( 2

fLHA-LSC 2.7× 102 3.8× 102 3.0× 102 1.94
fSt 2.0 2.0 2.0 1.24
fH 9.8 9.3 9.3 1.26
fSc 133 104 104 1.28
fMHS 36 31 31 1.27

a Also shown are the corresponding predictions obtained via fully classical simulations, and by using nonclassical initial sampling and neglecting
the nonlocal terms. The branching ratio between the two possible VER pathways is shown in the right column. Also reported are the LHA-LSC-
based quantum enhancement factor (fLHA-LSC) and the following QCFs (x ) âpω): (1) standardfSt(x) ) 2/(1 + e-x), (2) harmonicfH(x) ) x/(1 -

e-x), (3) SchofieldfSc ) ex/2, (4) mixed harmonic/SchofieldfMHS(x) ) xxex/2/(1-e-x).

Figure 4. The force-force correlation function (a, c) and its Fourier
transform (b, d), for the symmetrical stretch of LHL/Ar. Also shown
are the relative contributions of the classical-like and quantum nonlocal
terms (a, b), and the centrifugal and potential forces (c, d).
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contrasted with previous applications of the LHA-LSC method
to such systems as neat liquid oxygen, neat liquid nitrogen, and
oxygen/argon mixtures,55 where the nonclassical term was seen
to dominate the high-frequency tail of the FFCF. However, it
should be noted thatâpω in the case of the LHL/Ar system is
smaller by a factor of 4 or so in comparison to these other
systems.

Figure 4c shows the contributions to the FFCF from the terms
[FT,s + DT,s]FT,s(t) and [FU,s + DU,s]FU,s(t), which arise from
the centrifugal and potential forces, respectively (cross terms
are not shown explicitly, but can be deduced from the difference
between the overall FFCF and the diagonal contributions). The
corresponding contributions in the frequency domain are shown
in Figure 4d. Despite the relatively large moment of inertia,
the VER rate is clearly dominated by the potential force in both
the time and frequency domains. In fact, unlike in the classical
case, the effect of the centrifugal force, if any, falls within the
error bar.

In Figure 5, we show the FFCF in the time and frequency
domains (the latter is shown on a semilog plot), as obtained
via the LHA-LSC method, for the asymmetric stretch and IVR.
As for the symmetric stretch, the contribution of the nonclassical
term to the overall quantum enhancement ofkas is relatively
small (cf. Table 2). In the case ofkivr, the nonclassical term
does not even have an observable affect onkivr, which is
consistent with the relatively small value ofâpωivr.

B. CO2 in Liquid Argon at G ) 19.76 nm-3 andT ) 94.16
K. The VER rate constantskas, ks, andkivr for the CO2/Ar system
are shown in Figure 6, as a function of frequency (on a semilog
plot). The results obtained via the LHA-LSC method and fully
classical calculations are shown. The values ofkas, ks, andkivr

at the actual frequenciesωas, ωs, andωivr of the CO2 are given
in Table 3. Also given in this table are the values predicted by
only using nonclassical initial sampling, while neglecting the
nonlocal terms.

The classical rate for direct VER of the asymmetric stretch
is extremely slow in this system (kas ∼ 10-15 s-1), which can
be attributed to the relatively high value ofâpωas (∼37) and
the fact that the bath is less effective at relaxing the asymmetric
stretch.43 kas also remains negligibly slow within the LHA-
LSC treatment, despite the enhancement by about 8 orders of
magnitude relative to the classical result. Thus, the possibility
of direct VER of the asymmetric stretch to the ground state
can be ruled out.

The fastest VER rate in this system corresponds toks. In this
case, the LHA-LSC method predictsks ∼ 103 s-1, which
represents a quantum enhancement by about 4 orders of
magnitude relative to the corresponding classical result (∼10-1

s-1). For IVR, the LHA-LSC method predictskivr ∼ 0.6 s-1,
which is faster than the corresponding classical result by a factor
of about 50. Given thatâpωs ∼ âpωivr, this difference can only
be attributed to the fact that the solvent is more effective at
assisting VER of the symmetric stretch than IVR.43 Furthermore,
sinceâpωs, âpωivr . 1, the corresponding reverse processes
are negligibly slow. Thus, the rate of VER from the excited
asymmetric stretch is dictated bykivr, while that from the excited
symmetric stretch is dictated by byks (and is therefore
significantly faster).

The relative roles of nonclassical sampling and the nonclas-
sical term can also be inferred from the results presented in
Table 3. More specifically, while the addition of the nonclassical
term enhancesks and kas by 1 and 2 orders of magnitude,
respectively, it has no noticeable effect onkivr. As for the LHL/
Ar model, it is also found that the contribution of the centrifugal
force to ks is negligible. Finally, we note that the quantum
enhancement predicted via LHA-LSC for ks andkas does not
coincide with any of the QCFs, and falls between the Schofield
and harmonic/Schofield QCFs (cf. Table 3).

C. CO2 in Liquid Neon at G ) 42.24 nm-3 and T ) 37.6
K. The VER rate constantskas, ks, andkivr for the CO2/Ne system
are shown in Figure 7, as a function of frequency (on a semilog
plot). The results obtained via the LHA-LSC method and fully
classical calculations are shown. The values ofkas, ks, andkivr

at the actual frequenciesωas, ωs, andωivr of the CO2 molecule
are given in Table 4. Also given in this table are the values

Figure 5. The force-force correlation function and its Fourier
transform, for the asymmetric stretch (a, b) and IVR (c, d) of LHL/Ar.
Also shown are the relative contributions of the classical-like and
quantum nonlocal terms.

Figure 6. The classical and LHA-LSC frequency-dependent rate
constants for the symmetric stretch, asymmetric stretch, and IVR, for
CO2 in argon. Calculated data are shown as solid lines. The dashed
lines represent extrapolations to the corresponding frequencies of the
symmetric and asymmetric stretches. The relevant frequencies are
indicated by arrows.
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predicted by only using nonclassical initial sampling, while
neglecting the nonlocal terms.

The classical rate for direct VER of the asymmetric stretch
in this system is even slower than in CO2/Ar (kas∼ 10-19 s-1),
which can be attributed to the fact thatâpωas ∼ 92. Thus, the
possibility of direct VER of the asymmetric stretch to the ground
state can be ruled out. This remains true even if one takes into
account the enhancement by 15 orders of magnitude ofkas

predicted by the LHA-LSC method.
Similarly to the CO2/Ar system, the fastest VER rate in this

system corresponds toks. In this case, the LHA-LSC method
predictsks ∼ 104 s-1, which represents a quantum enhancement
by 7 orders of magnitude relative to the corresponding classical
result (∼5 × 10-4 s-1). The IVR rate is significantly slower
than that of direct VER from the symmetric stretch (kivr ∼ 3
s-1), with a smaller, 4 orders of magnitude, quantum enhance-
ment. Thus, the rate of VER from the excited asymmetric stretch
is dictated bykivr, while that from the excited symmetric stretch
is dictated by byks (and is therefore significantly faster). As
for the CO2/Ar system, the quantum enhancement predicted via
LHA-LSC forks andkasin the CO2/Ne system is different from
that predicted by various QCFs, and falls between the Schofield
and harmonic/Schofield QCFs (cf. Table 4).

Finally, it is interesting to note a trend reversal in the VER
rates between argon and neon as we go from the classical
treatment to its semiclassical counterpart (cf. Tables 3 and 4).
More specifically, while the classical VER rates in argon are
fasterthan those in neon, the LHA-LSC-based VER rates are
actually slower in argon than they are in neon. This implies
that the reduction of the VER rates due to the lower temperature
of the CO2/Ne system is more than compensated for by a
considerably larger quantum enhancement. This may be ex-
plained by the fact that neon has a smaller mass than argon
and that the Ne-O interaction potential is somewhat softer than
the Ar-O interaction potential, in the repulsive region. The CO2/
Ne system can therefore better penetrate classically forbidden
areas on the repulsive region of the interaction potential, which
would give rise to a larger quantum enhancement.

TABLE 3: kas, ks, and kivr in the CO2/Ar System, as Obtained via the LHA-LSC Methoda

ks/s-1

CO2/Ar
kas/s-1

U U U + T
kivr/s-1

U

classical (6.5( 1) × 10-15 (13 ( 1) × 10-2 (14.1( 1) × 10-2 (117( 4) × 10-4

nonclassical sampling (4( 2) × 10-9 (17 ( 3) × 101 (17 ( 3) × 101 (6 ( 1) × 10-1

LHA-LSC (4( 1) × 10-7 (11 ( 1) × 102 (11 ( 1) × 102 (6 ( 1) × 10-1

fLHA-LSC 5.7× 107 9 × 103 8 × 103 48
fSt 2 2 2 2
fH 37 19 19 18
fSc 9.3× 107 1.45× 105 1.45× 105 6.4× 103

fMHS 5.8× 105 5 × 102 5 × 102 3 × 102

a See footnotea below Table 2.

TABLE 4: kas, ks, and kivr in the CO2/Ne System, as Obtained via the LHA-LSC Methoda

ks/s-1

CO2/Ne
kas/s-1

U U U + T
kivr/s-1

U

classical (24( 8) × 10-20 (5 ( 1) × 10-4 (5 ( 1) × 10-4 (99 ( 8) × 10-6

nonclassical sampling (6( 2) × 10-7 (30 ( 6) × 101 (38 ( 7) × 101 2.6( 0.4
LHA-LSC (15( 4) × 10-5 (9 ( 1) × 103 (10 ( 2) × 103 2.6( 0.4

fLHA-LSC 6 × 1014 1.9× 107 2.4× 107 2.6× 104

fSt 2 2 2 2
fH 92 48 48 44
fSc 9 × 1019 2.6× 1010 2.6× 1010 3.4× 109

fMHS 9 × 1010 1.1× 106 1.1× 106 4 × 105

a See footnotea below Table 2.

Figure 7. The classical and LHA-LSC frequency-dependent rate
constants for the symmetric stretch, asymmetric stretch, and IVR, for
CO2 in neon. Calculated data are shown as solid lines. The dashed
lines represent extrapolations to the corresponding frequencies of the
symmetric and asymmetric stretches. The relevant frequencies are
indicated by arrows.
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VIII. Summary

In this paper, we have extended the applicability range of
the LHA-LSC method to the case of VER in polyatomic
molecules in liquid solution. Although our model of choice is
a relatively simple one, namely, a rigid, linear and symmetrical
triatomic solute in a monatomic liquid, it already includes the
main feature of VER in polyatomic systems, namely, the
multiplicity of VER pathways. Our main conclusions, which
we believe would also be relevant to many other polyatomic
systems, can be summarized as follows:

1. Generally speaking, the LHA-LSC method predicts faster
VER and IVR rates in comparison to the classical treatment.

2. The actual rate enhancement may be strongly pathway-
dependent. For example, for the model studied here, the
enhancement of intermolecular VER was found to be stronger
than that of IVR.

3. A classical treatment may provide an incorrect prediction
regarding the dependence of VER rates on the solvent. The
example of CO2 in argon and neon, where the classical VER
rates are faster in the former, while the LHA-LSC-based VER
rates are faster in the latter, demonstrates this point.

The next step is clearly to extend the methodology to more
realistic models, and incorporate such important aspects as
stretch-to-bend VER pathways, higher order IVR processes,
nonlinear molecular geometries, and polar solute-solvent
interactions. The investigation of these issues is currently
underway in our group, and will be reported in future publica-
tions.
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Appendix: Useful Expressions for Calculating the
LHA -LSC VER Rates

In this Appendix, we provide some technical details associated
with the calculation ofCs(t), Cas(t), andCivr(t) via the LHA-
LSC method. The following notations and conventions are used
throughout:

(1) The triatomic sitesa, b, andc are labeled 3, 1, and 2,
respectively.

(2) âh ) 5 - â, such thatâ ) 2 f âh ) 3 andâ ) 3 f âh )
2 (it should be noted thatâ is used here as an index, and should
not be confused withâ ) 1/kBT).

(3) r ) r (i,0â) corresponds to the vector pointing from theâ
site of the triatomic molecule to theith solvent atom.x ) x(i,0â),
y ) y(i,0â), andz) z(i,0â) correspond to thex, y, andzcoordinates
of this vector, andr ) |r | corresponds to its length.

(4) rj ) r (i,0âh) corresponds to the vector pointing from theâh
site of the triatomic molecule to theith solvent atom.xj ) x(i,0âh),
yj ) y(i,0âh), andzj ) z(i,0âh) correspond to thex, y, andzcoordinates
of this vector, andrj ) |rj| corresponds to its length.

(5) The elements of the transformation matrix from local to
normal mode coordinates:

(6) Various combinations of the pair potential functions and
their derivatives:

It should be noted thatφ(r) is one of three pair potentials. The
specific choice is dictated by the two sites involved in defining
the distancer.

The LHA requires the calculation of the first and second
derivatives of the potential energy with respect to the Cartesian
coordinates of the atoms. Explicit expressions for these deriva-
tives in the case of a diatomic molecule in a monatomic solvent
were given in ref 55, where LJ pair potentials were also
assumed. An extension of these results for the case of a linear
triatomic solute is rather straightforward and will therefore not
be reproduced here.

We next consider the calculation of the quantum nonlocal
terms{DU,n} wheren ) a, as. The explicit expressions for these
terms are given in ref 54. As shown there, calculating the real
part of{DU,n} requires knowledge of the second derivatives of
FU,n with respect to the atomic coordinates. Explicit expressions
of those derivatives are given below.

We first consider the case where the derivative is with respect
to coordinates of atoms in the triatomic molecule:

Here, as in the rest of the paper,- f - for â ) 2 and- f +
for â ) 3 (( f + for â ) 2 and( f - for â ) 3).

ηs
(1) ) 0, ηs

(2) ) 1

x2mA

, ηs
(3) ) - 1

x2mA

ηas
(1) ) -x2mA

MmB
, ηas

(2) ) ηas
(3) ) x mB

2mAM
(A1)

Φ4 ≡ rΦ′3(r) - 2(4 - 1)Φ3(r) ) r4
φ′′′′ - 6r3

φ′′′ +

15r2
φ′′ - 15rφ′ ) wj (r) (A2)

Φ3 ≡ rΦ′2(r) - 2(3 - 1)Φ2(r) ) r3
φ′′′ - 3r2

φ′′ + 3rφ′ )
w(r) (A3)

Φ2 ≡ rΦ′1(r) - 2(2 - 1)Φ1(r) ) r2
φ′′ - rφ′ ) V(r) (A4)

Φ1 ≡ rΦ′0 - 2(1 - 1)Φ0 ) rφ′ ) l (r) (A5)

Φ0 ≡ φ(r) (A6)

∂
2FU,n

∂x(0â)
∂x(0â)

) ∑
i)1

NAr

ηn
(â){w(r)x2 + V(r)r2

r6
r ·Ω + 2V(r)

xΩx

r4 };

for â ) 1 (A7)

∂
2FU,n

∂x(0â)
∂x(0â)

)

∑
i)1

NAr

ηn
(â){w(r)x2 + V(r)r2

r6
r ·Ω + 2V(r)

xΩx

r4
-

V(r)x2 + l (r)r2

r4re
};

for â ) 2, 3 (A8)

∂
2FU,n

∂x(0â)
∂y(0â)

) ∑
i)1

NAr

ηn
(â){w(r)xy

r6
r ·Ω + V(r)

xΩy + yΩx

r4 };

for â ) 1 (A9)

∂
2FU,n

∂x(0â)
∂y(0â)

)

∑
i)1

NAr

ηn
(â){w(r)xy

r6
r ·Ω + V(r)

xΩy + yΩx

r4
-

V(r)xy

r4re
};

for â ) 2, 3 (A10)
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Here, as well as throughout the remainder of this Appendix,
expressions for other second derivatives can be obtained by
substitutingx andy by other combinations of coordinates.

We next consider the case of a mixed second derivative with
respect to the solvent atom and triatomic site coordinates:

Finally, we consider the case of a second derivative with
respect to a solvent atom coordinate:

We next consider the calculation of the quantum nonlocal
term DU,s,as. Calculating the real part of this term requires
knowledge of the second derivative ofGaa ≡ G33 and Gcc ≡
G22 with respect to the atomic coordinates (cf. eq 20). Explicit
expressions of those derivatives are given below. We first
consider the case where the derivative is with respect to
coordinates of atoms in the triatomic molecule:

We next consider the case of a mixed second derivative with
respect to the solvent atom and triatomic site coordinates:

∂
2FU,n

∂x(0â)
∂x(0âh)

)

(∑
i)1

NAr {ηn
(â)

V(r)x2 + l(r)r2

2r4re

- ηn
(âh)

V(rj)xj2 + l(rj)rj2

2rj4re
};

for â ) 2, 3 (A11)

∂
2FU,n

∂x(0â)
∂x(01)

) -∑
i)1

NAr

ηn
(1){V(r)x2 + l(r)r2

2r4re
}; for â ) 2, 3

(A12)

∂
2FU,n

∂x(0â)
∂y(0âh)

) (∑
i)1

NAr {ηn
(â)

V(r)xy

2r4re

- ηn
(âh)

V(rj)xjyj

2rj4re
}; for â ) 2, 3

(A13)

∂
2FU,n

∂x(0â)
∂y(01)
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i)1

NAr

ηn
(1){V(r)xy

2r4re
}; for â ) 2, 3 (A14)

∂
2FU,n

∂x(i)
∂x(0â)

) -ηn
(1){w(r)x2 + V(r)r2

r6
r ·Ω + 2V(r)

xΩx

r4 };

for â ) 1 (A15)
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∂x(i)
∂x(0â)

) -ηn
(â){w(r)x2 + V(r)r2
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xΩx
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∑
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3

ηn
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2r4re

; for â ) 2, 3 (A16)
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xΩy + yΩx

r4 };

for â ) 1 (A17)
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for â ) 2, 3 (A23)
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Finally, we consider the case of a second derivative with
respect to a solvent atom coordinate:

References and Notes

(1) Faltermeier, B.; Protz, R.; Maier, M.Chem. Phys.1981, 62, 377.
(2) Brueck, S. R. J.; Osgood, R. M.Chem. Phys. Lett.1976, 39, 568.
(3) Oxtoby, D. W.AdV. Chem. Phys.1981, 47 (Part 2), 487.
(4) Chateau, M.; et al.J. Chem. Phys.1979, 71, 4799.
(5) Delalande, C.; Gale, G. M.J. Chem. Phys.1979, 71, 4804.
(6) Delalande, C.; Gale, G. M.J. Chem. Phys.1980, 73, 1918.
(7) Faltermeier, B.; Protz, R.; Maier, M.; Werner, E.Chem. Phys.

Lett. 1980, 74, 425.
(8) Oxtoby, D. W.Annu. ReV. Phys. Chem.1981, 32, 77.
(9) Oxtoby, D. W.J. Phys. Chem.1983, 87, 3028.

(10) Chesnoy, J.; Gale, G. M.Ann. Phys. Fr.1984, 9, 893.
(11) Chesnoy, J.; Gale, G. M.AdV. Chem. Phys.1988, 70 (Part 2), 297.
(12) Harris, C. B.; Smith, D. E.; Russell, D. J.Chem. ReV. 1990, 90,

481.
(13) Miller, D. W.; Adelman, S. A.Int. ReV. Phys. Chem.1994, 13,

359.
(14) Stratt, R. M.; Maroncelli, M.J. Phys. Chem.1996, 100, 12981.
(15) Owrutsky, J. C.; Raftery, D.; Hochstrasser, R. M.Annu. ReV. Phys.

Chem.1994, 45, 519.
(16) Elsaesser, T.; Kaiser, W.Annu. ReV. Phys. Chem.1991, 42, 83.
(17) Calaway, W. F.; Ewing, G. E.J. Chem. Phys.1975, 63, 2842.

(18) Laubereau, A.; Kaiser, W.ReV. Mod. Phys.1978, 50, 607.
(19) Roussignol, P.; Delalande, C.; Gale, G. M.Chem. Phys.1982, 70,

319.
(20) Heilweil, E. J.; Doany, F. E.; Moore, R.; Hochstrasser, R. M.J.

Chem. Phys.1982, 76, 5632.
(21) Heilweil, E. J.; Casassa, M. P.; Cavanagh, R. R.; Stephenson, J.

C. Chem. Phys. Lett.1985, 117, 185.
(22) Heilweil, E. J.; Casassa, M. P.; Cavanagh, R. R.; Stephenson, J.

C. J. Chem. Phys.1986, 85, 5004.
(23) Harris, A. L.; Brown, J. K.; Harris, C. B.Annu. ReV. Phys. Chem

1988, 39, 341.
(24) Paige, M. E.; Russell, D. J.; Harris, C. B.J. Chem. Phys.1986,

85, 3699.
(25) Owrutsky, J. C.; et al.Chem. Phys. Lett.1991, 184, 368.
(26) Moustakas, A.; Weitz, E.J. Chem. Phys.1993, 98, 6947.
(27) Kliner, D. A. V.; Alfano, J. C.; Barbara, P. F.J. Chem. Phys.

1993, 98, 5375.
(28) Zimdars, D.; et al.Phys. ReV. Lett. 1993, 70, 2718.
(29) Pugliano, N.; Szarka, A. Z.; Gnanakaran, S.; Hochstrasser, R. M.

J. Chem. Phys.1995, 103, 6498.
(30) Paige, M. E.; Harris, C. B.Chem. Phys.1990, 149, 37.
(31) Salloum, A.; Dubost, H.Chem. Phys.1994, 189, 179.
(32) Tokmakoff, A.; Sauter, B.; Fayer, M. D.J. Chem. Phys.1994,

100, 9035.
(33) Tokmakoff, A.; Fayer, M. D.J. Chem. Phys.1995, 103, 2810.
(34) Urdahl, R. S.; et al.J. Chem. Phys.1997, 107, 3747.
(35) Owrutsky, J. C.; Li, M.; Locke, B.; Hochstrasser, R. M.J. Phys.

Chem.1995, 99, 4842.
(36) Laenen, R.; Rauscher, C.; Laubereau, A.Phys. ReV. Lett. 1998,

80, 2622.
(37) Woutersen, S.; Emmerichs, U.; Nienhuys, H.; Bakker, H. J.Phys.

ReV. Lett. 1998, 81, 1106.
(38) Myers, D. J.; Urdahl, R. S.; Cherayil, B. J.; Fayer, M. D.J. Chem.

Phys.1997, 107, 9741.
(39) Myers, D. J.; et al.J. Chem. Phys.1998, 109, 5971.
(40) Sagnella, D. E.; et al.Proc. Natl. Acad. Sci. U.S.A.1999, 96, 14324.
(41) Hamm, P.; Lim, M.; Hochstrasser, R. M.J. Chem. Phys.1997,

107, 1523.
(42) Lawrence, C. P.; Skinner, J. L.J. Chem. Phys.2002, 117, 5827.
(43) Deng, Y.; Stratt, R. M.J. Chem. Phys.2002, 117, 1735.
(44) Deng, Y.; Stratt, R. M.J. Chem. Phys.2002, 117, 10752.
(45) Sibert, E. L., III; Rey, R.J. Chem. Phys.2002, 116, 237.
(46) Li, S.; Thompson, W. H.J. Chem. Phys.2003, 107, 8696.
(47) Bakker, H. J.J. Chem. Phys.2004, 121, 10088.
(48) Gulmen, T. S.; Sibert, E. L., III.J. Phys. Chem. A2004, 108, 2389.
(49) Gulmen, T. S.; Sibert, E. L., III.J. Phys. Chem. A2005, 109, 5777.
(50) Zwanzig, R.J. Chem. Phys.1961, 34, 1931.
(51) Everitt, K. F.; Egorov, S. A.; Skinner, J. L.Chem. Phys.1998,

235, 115.
(52) Everitt, K. F.; Skinner, J. L.J. Chem. Phys.1999, 110, 4467.
(53) Shi, Q.; Geva, E.J. Phys. Chem. A2003, 107, 9059.
(54) Shi, Q.; Geva, E.J. Phys. Chem. A2003, 107, 9070.
(55) Ka, B. J.; Shi, Q.; Geva, E.J. Phys. Chem. A2005, 109, 5527.
(56) Berne, B. J.; Jortner, J.; Gordon, R.J. Chem. Phys.1967, 47, 1600.
(57) Bader, J. S.; Berne, B. J.J. Chem. Phys.1994, 100, 8359.
(58) Egorov, S. A.; Everitt, K. F.; Skinner, J. L.J. Phys. Chem. A1999,

103, 9494.
(59) Egorov, S. A.; Skinner, J. L.J. Chem. Phys.2000, 112, 275.
(60) Skinner, J. L.; Park, K.J. Phys. Chem. B2001, 105, 6716.
(61) Rostkier-Edelstein, D.; Graf, P.; Nitzan, A.J. Chem. Phys.1997,

107, 10470.
(62) Rostkier-Edelstein, D.; Graf, P.; Nitzan, A.J. Chem. Phys.1998,

108, 9598.
(63) Everitt, K. F.; Skinner, J. L.; Ladanyi, B. M.J. Chem. Phys.2002,

116, 179.
(64) Berens, P. H.; White, S. R.; Wilson, K. R.J. Chem. Phys.1981,

75, 515.
(65) Frommhold, L.Collision-induced absorption in gases, Vol. 2 of

Cambridge Monographs on Atomic, Molecular, and Chemical Physics, 1st
ed.; Cambridge University Press: Cambridge, England, 1993.

(66) Skinner, J. L.J. Chem. Phys.1997, 107, 8717.
(67) An, S. C.; Montrose, C. J.; Litovitz, T. A.J. Chem. Phys.1967,

64, 3717.
(68) Egorov, S. A.; Skinner, J. L.Chem. Phys. Lett.1998, 293, 439.
(69) Schofield, P.Phys. ReV. Lett. 1960, 4, 239.
(70) Egelstaff, P. A.AdV. Phys.1962, 11, 203.
(71) Kneller, G. R.Mol. Phys.1994, 83, 63.
(72) Shi, Q.; Geva, E.J. Chem. Phys.2003, 118, 8173.
(73) Graener, H.; Seifert, G.; Laubereau, A.Phys. ReV. Lett.1991, 66,

2092.
(74) Vodopyanov, K. L.J. Chem. Phys.1991, 94, 5389.
(75) Nienhuys, H.; Woutersen, S.; van Santen, R. A.; Bakker, H. J.J.

Chem. Phys.1900, 111, 1494.

∂
2Gââ

∂x(i)
∂x(0â)

) -
wj (r)x2 + w(r)r2

r8
(r ·Ω)2 - 4

w(r)

r6
xΩxr ·Ω (

w(r)x2

rer
6

r ·Ω ( 2
V(r)

r4 [( x
2re

- Ωx)Ωx + 1
2re

r ·Ω] -
w(r)x2

r6
-

V(r)

r4
; for â ) 2, 3 (A29)

∂
2Gââ

∂x(i)
∂x(0âh)

) -
w(r)x2 + V(r)r2

rer
6

r ·Ω -
V(r)

rer
4
Ωxx; for â ) 2, 3

(A30)

∂
2Gââ

∂y(i)
∂x(0â)

) -
wj (r)xy

r8
(r ·Ω)2 - 2

w(r)

r6
(xΩy + yΩx)r ·Ω (

w(r)xy

rer
6

r ·Ω ( 2
V(r)

r4 ( x
2re

- Ωx)Ωy -
w(r)xy

r6
;

for â ) 2, 3 (A31)

∂
2Gââ

∂y(i)
∂x(0âh)

) -
w(r)xy

rer
6

r ·Ω -
V(r)

rer
4
xΩy; for â ) 2, 3 (A32)

∂
2Gââ

∂x(i)
∂x(01)

)
∂

2Gââ

∂y(i)
∂x(01)

) 0; for â ) 2, 3 (A33)

∂
2Gââ

∂x(i)
∂x(i)

)
wj (r)x2 + w(r)r2

r8
(r ·Ω)2 + 4

w(r)

r6
xΩxr ·Ω +

2
V(r)

r4
Ωx

2 +
w(r)x2

r6
+

V(r)

r4
for â ) 2, 3 (A34)

∂
2Gââ

∂y(i)
∂x(i)

)
wj (r)xy

r8
(r ·Ω)2 + 2

w(r)

r6
(xΩy +

yΩx)r ·Ω + 2
V(r)

r4
ΩxΩy +

w(r)xy

r6
; for â ) 2, 3 (A35)

∂
2Gââ

∂x(i)
∂x(j)

)
∂

2Gââ

∂x(i)
∂y(j)

) 0; for â ) 2, 3, andi * j (A36)

9566 J. Phys. Chem. A, Vol. 110, No. 31, 2006 Ka and Geva



(76) Deak, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D.J. Phys. Chem.
A 2000, 104, 4866.

(77) Rey, R.; Hynes, J. T.Chem. ReV. 2004, 104, 1915.
(78) Bakker, H. J.;J. Chem. Phys.1993, 98, 8496.
(79) Deak, J. C.; Iwaki, L. K.; Rhea, S. T.; Dlott, D. D.J. Raman

Spectrosc.2000, 31, 263.
(80) Dlott, D. D.Chem. Phys.2001, 266, 149.
(81) Hofmann, M.; Graener, H.Chem. Phys.1996, 206, 129.
(82) Graener, H.; Zu¨rl, R.; Hofmann, M.J. Phys. Chem. B1997, 101,

1745.
(83) Seifert, G.; Zu¨rl, R.; Graener, H.J. Phys. Chem. A1999, 103,

10749.
(84) Seifert, G.; Zu¨rl, R.; Patzlaff, T.; Graener, H.J. Chem. Phys.2000,

112, 6349.
(85) Deak, J. C.; Iwaki, L. K.; Dlott, D. D.Chem. Phys. Lett.1998,

293, 405.
(86) Deak, J. C.; Iwaki, L. K.; Dlott, D. D.J. Phys. Chem.A 1998,

102, 8193.
(87) Iwaki, L. K.; Deak, J. D.; Rhea, S. T.; Dlott, D. D.Chem. Phys.

Lett. 1999, 303, 176.
(88) Deak, J. C.; Iwaki, L. K.; Dlott, D. D.J. Phys. Chem. A1999,

103, 971.
(89) Hayes, S. C.; Phipott, M. J.; Reid, P. J.J. Chem. Phys.1998, 109,

2596.
(90) Wang, Z.; Pakoulev, A.; Pang, Y.; Dlott, D. D.Chem. Phys. Lett.

2003, 378, 281.
(91) Pakoulev, A.; Wang, Z.; Dlott, D. D.Chem. Phys. Lett.2003,

371, 2203.

(92) Pakoulev, A.; Wang, Z.; Pang, Y.; Dlott, D. D.Chem. Phys. Lett.
2003, 380, 404.

(93) Wang, Z.; Pakoulev, A.; Pang, Y.; Dlott, D. D.J. Phys. Chem. A
2004, 108, 9054.

(94) Wang, Z.; Pang, Y.; Dlott, D. D.Chem. Phys. Lett.2004, 397, 40.
(95) Iwaki, L. K.; Dlott, D. D. Chem. Phys. Lett.2000, 321, 419.
(96) Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A2000, 104, 9101.
(97) Wang, Z.; Pakoulev, A.; Dlott, D. D.Science2002, 296, 2201.
(98) Chorny, I.; Vieceli, J.; Benjamin, I.J. Chem. Phys.2002, 116,

8904.
(99) Rey, R.; Hynes, J. T.J. Chem. Phys.1996, 104, 2356.
(100) Lawrence, C. P.; Skinner, J. L.J. Chem. Phys.2003, 119, 1623.
(101) Ferrario, M.; Klein, M. L.; McDonald, I. R.Chem. Phys. Lett.

1993, 213, 537.
(102) Morita, A.; Kato, S.J. Chem. Phys.1998, 109, 5511.
(103) Hillery, M.; O’Connell, R. F.; Scully, M. O.; Wigner, E. P.Phys.

Rep.1984, 106, 121.
(104) Allen, M. P.; Tildesley, D. J.Computer Simulation of Liquids;

Clarendon: Oxford, 1987.
(105) Nitzan, A.; Mukamel, S.; Jortner, J.J. Chem. Phys.1974, 60,

3929.
(106) Nitzan, A.; Mukamel, S.; Jortner, J.J. Chem. Phys.1975, 63,

200.
(107) Jang, S.; Voth, G. A.J. Chem. Phys.1997, 107, 9514.
(108) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W.

T. Numerical Recipes; Cambridge University Press: Cambridge, 1986.

VER of Polyatomic Molecules in Liquid Solution J. Phys. Chem. A, Vol. 110, No. 31, 20069567


